<listing id="lvpfp"><listing id="lvpfp"><meter id="lvpfp"></meter></listing></listing>

<span id="lvpfp"><nobr id="lvpfp"><progress id="lvpfp"></progress></nobr></span>

故事詞典 精品故事閱讀鑒賞

加入收藏

您所在的位置:首頁 > 名人 > 名人軼事

名人軼事故事

歷史故事:韓信點兵

分類: 名人軼事 故事詞典 編輯 : 故事大全 發布 : 04-03

閱讀 :90

韓信點兵又稱為中國剩余定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人……。劉邦茫然而不知其數。

我們先考慮下列的問題:假設兵不滿一萬,每5人一列、9人一列、13人一列、17人一列都剩3人,則兵有多少?

首先我們先求5、9、13、17之最小公倍數9945(注:因為5、9、13、17為兩兩互質的整數,故其最小公倍數為這些數的積),然後再加3,得9948(人)。

中國有一本數學古書「孫子算經」也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問物幾何?」

答曰:「二十三」

術曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩二,置三十,并之,得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十,五五數之剩一,則置二十一,七七數之剩一,則置十五,即得。」

孫子算經的作者及確實著作年代均不可考,不過根據考證,著作年代不會在晉朝之後,以這個考證來說上面這種問題的解法,中國人發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩余定理。中國剩余定理(Chinese Remainder Theorem)在近代抽象代數學中占有一席非常重要的地位。

下一篇:離奇的望遠鏡 下一篇 【方向鍵 ( → )下一篇】

上一篇:歷史故事:伶人做官 上一篇 【方向鍵 ( ← )上一篇】

动漫高h视频